A human disease from almost seven hundred years ago made headlines again recently.

In 2011, scientists reported reconstructing the DNA of the bacterium responsible for the Black Death of 1347–1351. By 1400, at least five additional outbreaks had followed; about 25 million people, roughly a third of Europe’s population at the time, had died from the Black Death.

Also called the plague, the Black Death traveled from Asia to the area around the Mediterranean Sea, then, it spread to the rest of Europe. The symptoms of the Black Death gave the disease its name. One form of it was marked by swellings that caused black stains from bleeding under the skin, another form caused fever. Those who got the first form died within five days victims of the second form died even faster. The Black Death was so terrifying that parents and children abandoned each other, priests refused to visit the sick to hear last confessions. Some towns tried to keep out the disease by banning any outsiders from entering, meanwhile, many rich people fled to the countryside to try to escape.

To study the original bacterium, scientists extracted material from the teeth of four victims of the Black Death, these victims, buried in a London cemetery at some point after 1348, were exhumed in the 1980s. The bacterium is known as *Yersinia pestis* a modern-day strain of it exists in small rodents in eastern Asia.

Scientists planned to look at the differences between the old and the new *Y. pestis*. Each contained millions of DNA units however fewer than a hundred of the new units were different from the old units. Would scientists find that one or more of the DNA differences made the old bacterium much more deadly than today’s *Y. pestis* would they confirm that the poor living conditions of the fourteenth century explain the microbe’s drastic effect on Europe at that time? After all, that era did not have antibiotics and vaccines such tools would have minimized danger to humans from the medieval *Y. pestis*.